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PROBABILITY LIMIT THEOREMS AND THE CONVERGENCE OF

FINITE DIFFERENCE APPROXV%TIONS OF PARTIAL DIFFERENTIAL EVATTONS

Harold J. Kushner

Introduction

The Equations to be Considered

This paper is concerned with the application of certain conver-

gence theorems (for probability measures on spaces of continuous

functions) to a problem in the convergence of finite difference

approximations to partial differential equations.

Let G be a bounded open set in R  (Euclideanr-space) with

a continuous boundary W, and let k(•) and (p(v) be non-negative

continuous functions on R  (and, occasionally, when the argument t

appears, . Rr+1). Consider the possibly degenerate elliptic or

parabolic equations of either of the forms (1) - (3).

2
= L aij (x) dX 	 +	 .f i (x )

V(x) = k (x )^ V(aG) _ ^()	 (l)

ZV(x) - PV (x) = k (x), V	 (dG)	 (2)

Vt (x,t) + :cv(x,t) = k(x,t), V(x,t) = q (x,T)	 {3}

V(aG) t) _ (aG,t), t < T.
1
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Note that I tIlme l flows backward in (3); a simple transformation

converts it into the more standard problem. One of the main results

of the Raper concern.,,, the convergence of finite difference approxima-

tlon ,,; to (J.) - (3)) ris the difference interval goes to zero.

Probabilistic Interpretation

(1) - (3) can be given a probabilistic but physical interpretation.

In fact, this 'physical' probabilistic interpretation will be used very

heavily in the interpretation of the finite difference equations, in

the motivation of the development, and in the convergence proofs. Let

zt be a vector of independent Wiener processes (thus EzttZ I = It

and let x t be the solution to the Ito stochastic differential equa-

tion (:boob [1], Chapter 6)

f (xt ) dt + a (- t ) dztX	 .9

where f(-) and a(-) are bounded by a real number K and sat..sfy

a uniform Lipschitz condition; e.g.,

1 f (Y)  - f (X) I t--, K I Y-x I .

x t can be defined to be continuous w.p.l. and satisfy the

properties + (Doob [1])

+0(t) is of the order of t and 0(h)/h -4 0 as h -.*0.

(k)

I
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E max E)xs -x0 1
2
 = 0(t)

U^s0

E (xh-x0 I x0 ) = f (x0 ) h + o (h)

c ov (xh-x0 j x0 ) = a (x0 ) a l (x0 ) h + o(h).

Define the matrix a (x) by 2a (x) = a(x)a , (x) =— (a i (x)} and

let T be the random time at which the diffus ion xt first reaches

the boundary aG, for x0 = x e G. and suppose that E 
x 
T <	 Then,

with Ex denoting the expectation given the initial condition

x0 = X. under certain conditions (1) - (3) have the unique solutions

(la) - (3a) , resp. (Dynkin [ 2] ^ Chapter 13) .

T
V(x) = Ex f k(xs )ds + EYy (XT)	 (la)

0

V(x) = Ex f Te -ask (xs )ds + Exe-I q) (xT )	 (2a)
0

Tn r
V(x .,t) = EX t f	 k(xs.9 s ) ds + Ex t9 (xm)TpTCIT)	 (3a)

t

`	 where we define t n s = min (t,$), and in (3a), 
Ex,t 

implies that

I	
xt = x.

Since we allow (aid (x)) to be degenerate s by letting t be

the r + 1 st coordinate of x, (3) becomes a special case of (1) .

Then the cylinder G X [0 j T] = G replaces G in (1) and T n T^ the

finite escape time from G replaces T in (1). Thlas we will not
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treat (3) separately.

The conditions under which (1) - {3) are known to have solutions

which are smooth enough to satisfy (1) - (3) (strong solutions) are

quite restricted; in particular, full ellipticity of C is generally

requ7-ed. Yet, in rather typical situation;, this condition is

violated. This occurs almost all the time in stochastic control

theory, where, in fact, one uses (1) - (3) to represent the cost

functions (la) - (3a), and hopes to solve (1) - (3) in order to ob-

tain (la) - (3a). For a particular case, consider the formal

differential equation

y (r) + cr-ly(r-1) +...+ c 0y = at
	

(5)

where	 is 'white Gaussian noise'. Putting (5) into the form (4)

yields

dxl
	 0	 0	 1	 0	 0

- dx = 0	 0	 0	 1	 xdt + 0 dz00.
dxr	 -c0
	

-C 
n-1ar

and ai
j
 = 0, unless i - j - r.

Of cou se (1) - (3) may be derived from other than stochastic

considerations. Yet, still, unless we know that there is a solution

to (1 ) - 3 with suitably smooth derivatives and have an a`( ) O	 Y	 ,	 appropriate

discrete maxiinum principle available, the usual methods (see, e.g. [31')

l

t

l
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for proving convergence of the finite difference approximations, as

the difference interval converges, do not apply. Nevertheless, for

each difference interval, the finite difference equations appro.&Iwat-

ing (l) - (3) may still have unique solutions, and it is meaningful

to ask whether the solutions converge to (la) - (3a), as the interval

decreases to zero.

This problem will be treated by a probabilistic method. We

also note that even if e is the Laplacian, classical proofs of con-

vergence cannot be used if G has corners, singe then the second

derivatives may not be uniformly continuous in G.

Section 2 describes the finite difference equations to be used,

and gives a useful probabilistic interpretation of them. The method

of proof is described, and main theorems stated in Section 3.

The theorems use some general conditions which are quite common

in applications. This is illustrated in the typical (degenerate

elliptic) example of Section 4. Proofs of the theorems appear in the

appendix:. The treatment of the discounted problem (2) - (2a) is

similar to that of (1) - (la) and will not be given.

2. Finite Difference Equations and Markov Chains

P

Terminology

For equation (1) let the difference interval be h (in any

coordinate direction ) and let ei be the unit vector in the ith
,

This  is for convience in development. The difference interval can
certainly depend on the direction.

6
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coordinate direction. k0uppcoe that tz' Is strictly contained in a

Rhbypercube 11 with 0214 -s r -A,Aj. Define the set of nodes Rj in

R r by	
r

[(",,Lhl ... 11rh)) n, ranging over 0. ±lY *2, ...
rDefine Oh G r' Ri 
if

in order to --xpoM;u thr . method, and not get involved with the

rather long finite dlffer^nce oquations arising when mixed second

derivatives occur, we let a Ii = 0 for i ^ J. There is no trouble

in extending the method to the more general case.

Form of the Finite Difference Equations

The following finite difference approximations will be used.

V(x+e h) - V(x)

Vx.
	 (6a)

I	 V(x)	 V(x-e I h)

where the upper tenD of (6a) is used if fi (x) z 0, and the lower

otherwise. (This usage will be carried throughout ., upper entries in

always used if f
3.
. ? 0. etc.)

VX.X.
(x) — [V(x+ejh) - 2	

3.
V(x) + V(x.e.h)]/h2 	 (6b)

3.

The reason for the choice (6a) will appear shortly.

If Vh(x) denotes the solution to the finite difference equa-

tions ., then using (6) for x c Gh,, (1) yields
4

t
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sii	 fi Vh (x+ei h) - Vh(x)
0 Z '	 (Vh (x+eih) - 2Vh (x) + Vh (x-eih)] + E ^i h	 i	 v  (x) - V  (x-eih)

+ k(x)

or, by collecting terms

V (x
) E Vh(x+eih) h^ fi l + "ii + Z Vh(x-eih)	 aii	 lb--^-N 	 w---T-	 --^—	 ( )ih	 x	

aii	 i - ^^^ )	 hi f3. l + aii,

where Q h(x) = 2 aii + hl fi I . Define V  (x) = cp (x) for x e Rh - Gh.

Rewrite (lb) as (with the obvious identification of terms)

Vh(x) Z V,I (x+eih)ph (xlx+e,h) + firh (x-eih )pn (x^x-eih) + ph (x)K(x)

(lc)

V(x) cp(x), for x e % - Gh.

Now the reason for the choice (6a) will become clear. Note that

since the ph (x,y) ? 0 and sum to at most unity, and can be defined

for all x,y F Rh, they can be considered to be transition probabilities

for a Markov chain on the grid Rh. This is the setup used in (Kushner,

Kleinman (41), where problems concerning the computation of solutions

of non-linear versions of (lc) were considered.

Denote the sequence of random variables of this Markov chain by

(t-k) Thus P(gk+l = 9k + hei) ph (x,x+eih), etc. Define

t

I

P
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Nh = ink' fk gk ^ G .

Now we proceed to investigate the behavior as h -o 0. Suppose*

Nlfh < K,h < co, The soLution to (1c) can be written as [ 4]

^II~1 h	 h	 h

	

vh (x) 
= Ex' ph ( k}k(^)	 Ex (^ }•	 (ld}

k=()	 h

3. The Method

The probabilistic interpretation (la) of (1), and the probabilis-

tic interpretation (1d) of the finite difference system (lc), as well

as the similarity of the form (1d) to a Reimann sum approximation to

(1a), suggest that one could treat the convergence problem as a problem

in the convergence (in a suitable sense) of the measures associated

with { k} to that of (xt). In fact this procedure is quite fruit-

ful, and much of the sequel, is devoted to setting the problem up so

as to use the following theorem of Gikhman and Skorokhod [5],

Chapter 9. (Actually, Theorem A is a composite of several theorems

oy' [5 ], Chapter 9, Sections l..2.)

Theorem A. Let C[Q,T] Q be the set of Rr valued continuous

functions on the interval [OA T]. Let y (t), y(t) p t e [0,T] be

continuous processes with paths in the (topological) space n, Let

7

I
This is not restrictive in applications (see [41). In fact the con-
dition is implied by condition (11) of Theorem 3 which is also natural
in applications (see Example)



µn and µ be the measures inducedonon 0 by the process s y (•)

and y (•) , rte. Let (for 0 t o ;i t" ;9 T)

lim ME Fx ( sup	 yn (t' } - yn (t")	 e > 0) = 0
S -+ 0 n x t' -t" ` s

for any e > 0. Let the finite dimensional distributions of

(yn (t)) converge to these of y (t) . Let F(-) be a bounded and

continuous (w.p.l.) functional on the topological space Q. Then

EF(yn ( • )} -^EF(y(•}}.

In the Appendix and section on convergence ., Theorem A is ex-

ploited and extended to yield a solution (Theorem 3) to our problem.

The example illustrates that the conditions of Theorem 3 are quite

4. natural for a very large class of problems.
f	 ^_

In order to exploit Theorem A. the process ( k) must be re-
lated to a suitable continuous time p rocess ( h(t)).

By a cmparison of (ld) and (la) we note that the 'discrete

tithe' cost rate is p h(x) tames the continuous time cost. In an

h

	

' 	 intuitive sense s one step of the discrete process k should take

P ( ) units of real time. Thus the following definition is natural.h 
h
k

4
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Define the time sequence	 (tk} by+ (sometimes arguments ofrunctions

are deleted for simplicity)

Qtk -Atl i
 
(P'

k
) '=-

t0=th_0

tk =	 At .
0 s<k

Define a process ^h (t) by

h (tk) = ^h

at the times (t k), and for tk n- t < tk*3 ^ by the linear interpolation

t_th	 h1^h th

h(t)	
^h	 (	 k ) + tk \ k+l- k)
k+l At 	̂ At ( ^ k)

Thus the continuous process g h (t) is piecewise linear and changes

slope at the random break points (t k} only.

The use of i1 (t) is a natural way of relating r ^ k} and. x t o

This can be seen from the last part of the following remark and from

the calculations(8) ,which indicate that the drift and diffusion co-

efficients of h (t) converge to those of the x  process as t -+0.

We use ph (^h)^, Atka nd Ath (gk) interchangeably. Also ., sometimes

	

the arguments of f  and a 	 omitted.

t
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Remark. To illustrate the random time scaling, consider the

scalar example where 	 `

dx = -xdt + adz

and

2
aa.- ^x - xVx + k (x) 0,	 V (A) = V (-A) = 0.

For x = nh, n 0, the discrete equations reduce to

2	 2	 2Vh(x) = Vh( x-h) [Q 2+xh + Vh(x+h)Q 2 + k(x) G-2
a +xh	 a +xh	 a +xh

Vh (x-h) ph (x,x-h) + Vh (x+h)ph (x,x+h) + ph(x)k(x).

A simple discrete time (continuous state space) approximation

to x  is given by

OU

x
v

r

Xn+l = Xn - Xri + alz (n+l)^ z A	 (()

!	 and E[Xn-Xt]2 -+0 as n -+ w., if np remains fixed at t. However,

while the time step, p, is constant, the one step jumps are unbounded:

as Xn increases the average step size increases, etc. If we are to

bound the step size at each n (as we do with the process

	

	 h}n
approximating Xt), we must restrict the time p at each n in some

1
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ti
way which depends on the only known variable Xn.

This is clearly seen in the degenerate case v = 0. Then if

x # 0.,

h	 h
ph (x) = I x _ 

ve loci ty

which is exactly the time which it takes a particle to move the

standard distance h, if the velocity were fixed at x during the

time of movement.

Equations (2) and (3) can be treated similarly to (1). For ex-

ample, applying (6) to (2). collecting terms, and dividing by the

coefficient of V (x) yields, for x e Gh)

V (x) 	
Vh (x+e ih )	 hl fij +aii + Vh(x-eih)	 aii	 (2b)h	 i -Z;h7)aii	 i	 h^ fil + a1i

+ k(x)h2/$h(x)

where

$h (x) 2 aii + h If 1  + OP.

(2b) can be rewritten as

Vh (x) = -roh (x) {Z Vh(x+eih)ph(x^x+eih)i
+ Vh(x-eih)ph (x,,x-eih) + ph(x)k(x)),

i

7

(5)c) 1
I
111



1.3

with boundary values defined as

V(X) _(x),	 e Rh - Ohs

where

2
r h (x) _ (1 - 

T;7T
Ph ) = (1 - Pp(x) + 0(h3))•

The solution to (2c) is the discounted cost

..
N n	 r.	 h	 h	 Wh	 h	 h

vh (X ) = Ex	 (Ilr^h(ti))k(^n)Ph(tn) + EX (IIY^h (^n))^(tW ) • (2d)
n=0 i=0	 n=0	 h

The convergence of (2d) to (2a) can be discussed along the same lines

as for equation (1). but will not be developed here.

	

A Canonical Form For	 h}.

Write the j th component of^ka s Ek r . With g  = ^' the

transition probabilities p(x .,x+e h) given by (lb) yield

	

E[th 	 I lz = q= h  ( 0 = p (^ )£k+l	 k	 ( ) •PO

The average change in th (t) in 
time Ath q) is merely the mean

drift of the diffusion (4) times the time interval ph (t) =&t h ( )^

a further check of the naturalness of our time scaling.

Since the process k moves in only one direction at a time

I

($a)
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hh	 can be non-zero for only one i. Thus the off diagonal
k+l)i-9k)i

elements of the first matrix on the right of

Cov
^l^+l - ^ ^ ^k ^ 	 ^	 h	 -

At (0

E[ (tk+l-t) j tk 

At(^ )

= ^ ]E[ (^k+l-^ )' k =
- ZO) = (Zh)ij (0) =

ah(g)ah(^)

are zero. Thus

`h.9ij(F) 	 othWfi (O f
j Q) = 0(h^)
	

for i # j
	

(8b)

whiles for 2= j (and using 2aii = Qi)

j
' i = 2aii + [hj fi ) - At 

h(g) 
f  2i}

= ari + h[) fi ) - fi,Ath(g)]

a + 0(h).

t

(8c)

i
As a further check on the scaling of ^(t), observe the

connection between the 'infinitesimal , properties of the { k} and

(xt ) processes:

I
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h	 h h _
lizn E(^k+^.k^ ^k ^' x)	 1,im Ex(x^-x)

h -4 0	 At (x)	
,^ 0 _.r.^......

f. ov (tk+l- k I tk -- x)	 Gov (X X)
lug 	lim	 .

h-40	 At (x)	 S-► 0^^

	

h	 h	 h
Next, we may write ^k+l as (recall At  = pQk))

k+l - k + f(tk )At k + 0k

where

^k «k+l-tk - f ( k )Atk ^	 k = 0.
1

Let j 4 k. Then E [Ppj I ^j , ^j+ll9k] 
= 0 implies that ^^} is an

orthogonal sequence. We next give a convenient representation for the

+ driving term'	 k.

There is ar, orthogonal sequence (ck) satisfying

E [ j	 ...	 ] = 0	 andwk 0	 k

h	 h	 hE[ua qj t0^ ... gk] = IAtk

1/2

Pk = Atk ` h( 9k )wk	 (*)

4
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T-Ti exi'"'tj we 21how 01	 ialqk r	 f"l

Thn()r r'1a f,f	 r	 ' j ! 11.	 By (6b-C)

F

("MA,	 4, 111,	 1;( nt J

(!(Iu j ro; , 	 th"'f3 .- 'J rkqr!	 i"I"olill-	 olom--' -rd" bo	 Zero.	 PhIls	 4	 f' -

for some	 i. Bat then 0 the I	 row and column of	 11.1rr, zaro .1 fnd

- o is G'. ..
K) I

h
Then by roorderinti , the states (at

k
and repeatinr, the

M7tar^rum n	
A

,^t W01	V, S IIPJYX 3t^ th	 07 at f^ k
	 ki 1)
	

kJ9 s

(N^s+l-' " " 0 -'Pkl r) 
has linearly independent components and thri*F

h

Zh (^k)	
0

hh	 11^ ry	 h	 h

B 
(^ h)	 At k B 

h (P'k) 
= E[P 

kpk'l ^^O-' * 

0 
9 .1 ^Ikl

h , k

11Fipally, define	 ... k-
Ah ^rQh	 where
"k "k

^'h = 
B- 

1/2 ( ^h ).
h

Let
k

Ah
(a-%k be an independeni; s-vector Gausk;ian sequence with mean	 arz",

Ah h XhVA7unit variance.	 Define	 ( 
'k

_ Thus
k 'k

the generality of

is proved.

Next note that from 
h i	 h + At- 

h 
f 

h	 h h
I t	

^k+	 k	 k :L (Q + Eh (bkk)a^ I
+ 
zh is uniformly dominated by (say) 1/2 of its diagonal matrix, for

small h.
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we also have

Er 11 1 
h	 h	 I = 0

Er h, h	 11	 h	 h	 h

Convergence Theorems

Let measures 4h and 4

correspond to processes ^ h (t)

ditions (Cl) - (c4) used in the

class of problems, and are illu

(on the topological space n = C[O.,T]

and xt., resp. t e [0,T]. The con-

sequel are quite natural for a large

strated, in the example.

Theorem 1. Assume

(Cl) fi (^) and a,j (^) are uniformly bounded and

satisfy a uniform Lipschitz condition. (Recall a = aal.)
2

	

(C2) Let 6
h 

equal h or b	 For real positive

K. let
I

X a h -> At h (g, ) g K2 E5h, -

(0) Let a(^) , have the form

0
a(P	

0	 0	 0

F) =	 O	 a o (^)cr lOF(4,) y a(^)
0	 0 a

o (o
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-1

where Z0 (,) has uniformly 'bounded terms.

Then the finite dimensional distributions of the process ht+)

converge to those of+ the process x  and_, for 0 ;e t' I t" T, and

c>0,

lim TM x [	 sup	 ^h (t , ) - th (t it )	 E)	 0 •	 ( )
S --► 0 h -+ 0	 I t I -tit

Remark. (C2) means the following. Either we allow

aii (g) 9 eo > 0 for some real co, in which case Sh h or we
1

allow	 aii 9)  0 and	 I f i I ;; co > 0, in which case $h = h. Thusi i
2 cases axe considered - one case in which there is alwa^rs some

diffusion somewhere, and one case in which there is no diffusion -

but where the velocity of x  is never 0. In the intermediate case

the ratio

max 4th ( )

min At ()	 z

F,

may be infinite, invalidating our proofs. The first case is one of

great importance.

For future reference, we note that (Cl) - (C2) and (8b-c)

+By such convergence, we always mean convergence at the points of con-
tinuit of the relevant distribution for the processY	 s	 pr e s xt.



1

iimply+ (for some real X)

T^/8h	 h	 h 2

(C4) Z 
	 ah ( k) - a ( tk) I 8h 15K.,Ih

and

T"2 /E5 	 h	 11	 2+^i	 b
(C5) E	 ( k+l, i`tk i1	 KTh

k=0	 ,

for any 5>0  and i=

Corollary 1. Assume (Cl) - 03) Let F( • ) be a bounded con-

tinuous function on C[4,T] w.p.l. (relative to µ). Then (with

h90=X=XQ)

Theorem 2 uses condition (c6). (C6). Thete is an h0 > 0 so that

for h < hG, G satisfies: Let I = (a,b) be a line connecting two

adjacent (along coordinate directions) points (a,b) of the grid Rh. If

a and b are both in G. then so is the line I connecting them.

(C6) can be weakened in many ways - but there seems little point in

complicating the condition here. It is certainly satisfied (far any

For a vector x, (x^ 2	 xi. Fora matrix Q, Q^ 2 Z ai3, where

( aij
)	

a = a l a. Recall that ah(t)aA(t) = Eh ( ^ •

++Ex 
i.s the expectation given xa = x.

7
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vt ,̂r Lhtov the rjr ",,-L ijuii;uo-

I i	 f- approxlmatel y th,	 10 a4 t(

T.(.". ) tho ( 11 botwoon the nth an ,I 	 4-11 +	 JaL

then	 1 1 , It 110	 il:;od to avoid the

1 Llim"trate(I by Fli' ur{' (t'(-,r	 a 	 I h)., where it' the Usorote

ljrof , ( o A	
II

,, O	 ^I llni
,
i 	 ji;; 13	 %. t t1mo n,	 1.1, has n(d, a(AIIIal.l.y Left

k

4
T I but the intPrP()I Ikr0,(!d 1WOUUOS, 1 (t) leaves right after time n.

Theorem 2. AcW,,UM(., (CJ) - (C3) and ((',6). T,Pt, k(-) and 	 be uni-

formly continuous and bounded on =me open set containing 	 G + -

Lot T denote the fir.-it (random) time that the process xt leaves

G (T = inf (t: xt ^ CMIP uid suppose that T n T =- min (T,T) is

+	
w-.t,..t. ;;tut^,mcnt -is r e lative: to µ) can C[O ., Tl.continuoub-i w.p..^.. ( L,	 -	 --

De^notc 
Th = 'nf (t: ^ 

h (t) ^ 0). Then

x 
f Tnr k (x S )dO- 	 IJm E if	

nk(,h 
(s) ) ds

0	 h -4 0 x 0
(i0a)

h	 h	 h
lim E E k(^ )Ph(t,)

b --) 0 
x 

S=0

E xq) (x 
Tnr) = lim Ex̂  (^ 

h 
(Tnrh)) = lim ExC^(^'	 (10b)

h ^O	 h -4 0	 "h

+T n T is a function of the path x.

--7

P,
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Theorem 3. Assume the conditions of Theorem 2 i and let, for

some t0 < ooh

Ry

X(9k leaves Gh at least once by time t0} MO > 0	 (ll)

where MO is independent of x e Gh and h > 0, for small h. Then

the yh (x) given by (ld) converge to (1) as h -+ 0. uniformly in x

in G; i.e., the solutions of the finite difference equations (lb,c)

converge to the weak solution (la) of the a uation (1), as h -30.

The arguments of the example yield Theorem 4, which generalizes

Theorem 3 and does not contain (11) explicitly.

4. Example

The conditions imposed in Theorems 1-3 are rather natural for a

large class of problems, and in order to illustrate this, their

validity will be checked for a 2-dimensional problem. It should be

clear that the example is typical of a large class. Although the

basic problem arose in numerical analysis, the approach taken here
#.

as well as the conditions, are probabilistic. Hence, the checking of

the conditions involves probabilistic calculations on the underlying

processes. Let

to



f

22

G	 0
dxl = :11 (x2 ) C u	 a =	 2 = vo'

0 v

(12)
dx2 = f.'2 (x)dt + vfiz

where v is a constaalt and the fi satisfy (Cl). Let fl (x2 ) = x2

in G. We seek to soave

ACV (x) + k (x) = 0 in G	
(13)

V (x) = cp (x) on aG

where k( • ) and cp(•) are continuous and bounded

2	 2
_ 7— 7 + fl (x)" + f2(x)

T7 	1	 2

and G is the box

G = (x. ( xi l .^ A).

t

Thus (C6) holds

Note that

classical theor;

(13) as h -+ 0.

Using (6)

for all h0 > 0.

e is degenerate and G has corners; hence,

y cannot be used to solve the convergence problem for

gives

s

k
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Vh (x+elh) hl - 1.'1 1	 Vh(x-elh)	 0

h	 ^^x^ 
0 +	 x hi fl)

Vh (x+e2h) v2/2 + hIf2 l	 Vh(x-e2h)
	 v ^2	 k(x)h2

+ x	 V"/2^^2	
+x^.^ v

,h	 /2+hif2l +	 r.

for x on Gh, bhe grid in G; on the grid Rh - Gh outside of

G, def ine

Vh(x) = q) (x)	 for	 x c % - Gh.

We need only show that T n T is continuous w.p.l. (relative

to µ) on C[O,T], and that (11) holds. First, we prove the con-

tinuity condition. Let w be a generic point of C[O,T] = n. Thus

we may write xt , the value of the process at time t, more explicitly

as x  (w) .

In fact, T n i is not continuous everywhere on n. To see why,

let y  be a scalar process and define ti(w) = inf (t: y t (w) ? %)

Consider the path yt (w) of Figure 1. For any continuous sequence

tgn (-)) for which , yt(w) ? gn(t) T yt (w) uniformly on [O,T], we

have

t

inf (t: gn (t) ? %) n T = T.



o
Px (x ,r e c1G, xT+E E G for all S z e > 0) = 0	 (14)

24

Thus (T n T) (w) is not continuous at the w corresponding to the

path yt (.,^,) of kligure 1. however, it is continuous at wt .

Returning to the problem (12), (13) refer to Figure 2. It is

clear that if tangencies at the boundary occur only w.p. zero ., then,

by virtue of the contin-+tity of xt (w) w.p.l., (T n T) (w) will be

continuous w.p.l. TYiis will. now be shown to be the case.

We observe that

(a) for x 2 > 0 ) xit must increase (as time increases)

since dx1 = x2dt in G. Hence ., w.p.l. points on the boundary

section L4 (Figure 2) are not accessible. S imilarly for L3.

(b) Also, since x2t > 0 on Ll., the path cannot be

tangent on Ll., and similarly for L2.

(c) Owing to the dominant effects of the diffusion on

movement in the vertical direction ., the points on 1. 5 and L6 are

regular in the sense of Dyn:kin [2]; i.e.

(d) x (T = T) = 0

(e) px (xIT = q1 or q2) = 0..

In fact ., (a) - (e) imply the existence of ei (w) > 0 w.p.l.

so that ., for ti (w) s T). T W + E 2 (m) s T w.p.l. (relative to

(ws r (w) s T) ) and

=x,



r

(2) Since x  is Continuous ) w.p.l., there are

E3
(w) > 0, w.p.l., E4 (w) > 0 w.p.l. so that

d.ist loe (xt-e
3
 (,), exterior, of G) ? 64(w),

..for  all t	 T (w) if T (cu) `. T.

Now, denote: by N. the sum of the exceptional null sets in

(a) - (f) . Let w e Q - NO and r(cu) s T. Let ( gn (t) } in

C[O,T] satisfy (as n	 c*)

sup I gn (t) - xt (w) l -a O .
OStsT

Let e > 0 be arbitrary. Then by (a) - (f), for large n, the first

time gn (t) leaves G must be within E of T(CO). This proves the

continuity w.p.l. of T(w) n T = (T n T)(w).

Only (ll) remains to be proved. Let N = t0/K1h2, for any

t0 > 0 ., and define

M+ ( ) = number of positive :steps of ^ h 2 , k s N
kip 

M- Q) = number of negative steps of k 2 , k s N.

A sufficient condition for (ll) is
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qh (x) = PXR () - M- (^) i;	 MO > 0.	 (15)

For some real K, we have the bounds,

7 - Kh x k+l,2 - ^k.V2 = h) s 7 + Kh.

Let ( uk ) be a Markov process on (0.9tly-t2)...} with transition

probability

P(uk+l = uk+ l} = - Kh = 1 - ^'(uk+l uk 1}.

Define M+ (u) analogously to Mt (^). Then

qh (x) ? gh'u (x) =— P(M r (u) M- (u) - 2A/h} .

The mean value of u k+l - u 
k 

is -,2Kh, and its variance is 1 - (2kh)2.

Now

s
M (u)-M-(u)-N(-2kh) 4 h+2Nkh

q  u(x) P	 ?	 rr-- r7e n 
2

	 ri- TK7

The left term in brackets converges in distribution to the

normal zero mean and unity variance random variable, and the right

hand term in the brackets is strictly less than some K3 < w for

small h. Thus, for all small h

0

1

PW
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qh (x) k qh' u (x) a — 1	
CO

 _' f exp .. y dy,
27r

which proves (11).

The crucial step in the proof of (11), the bounding of the

drift in one direction, can easily be generalized. In fact, (11)

holds if

0	 0
a=

0	 EO

-1
where Z0 has uniformly bounded terms in G.

In fact, the example can be generalized to yield (The proof is

a combination of the arguments of the example and of Theorem 3 and

is omitted.)

Theorem
 

4.	 Assume(Cl) - (C3) a_ nd (c6).	 Let	 W = Bi + 82-0 where

points on	 B1	 are regular for the process	 xt	 in the sense (14) of

Dynkin  [ 2]	 and on
ri B 2	 are iriaceeasable w.p,^ . for the process xt.

r If	 k(-)	 and	 (P(-) are continuous on a neighborhood containing

then	 Vh (x) -+ y (x) .

4
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APPENDIX

`.t'he proof of Theorem 1 will be developed via a series of lemmas,

The symbols K or K  are used for any constant; values may change

from usage to usage.

Lemma 1. Assume (C1) _ 03). Define the process (1h with

initial condition qh 0 = h and

'k+1 _ 'k + ( ^k)Qtk + a (r^k)"k

where Atk h  = oth( k).	 Let N = T/K26h

sup E, q' 
tki 

2 -> 0
N?k^O

(Al )

as h —> 0. Define qh(t) as the linear interpolation 	 qh i.e

for t s t < tk	
k+l'

h	 h
(t - t )	 (t	 t)

^h (t ) ' ^lh (tk+l) At 	 + '^h (tk) k^'—h
ptk	

At 

hThen if the multidimensional distributions of the process q (t)

have limits, so do those corresponding to the limit of the h 

process and they are the same. (Note that the^k and ^k equations

differ only in thatZ
1/2

 is replaced by its limit a.)

Proof. Let -	 be the minimal a-al ebra over whichh, k	 g

OW
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( ,, i -t k) is measurable. For simplicity of writing, we drop the

index h on 	 , Vi i,d t .	 i ^	 h# k:cu	 .F	 etc. whenever no conft,4s3on will arise.

Both	 s and n	 s	 kSJO are
k
	 measurable 	 and we use the

notation At - At (t k) . From

'k+1 - ^k+l ^ ilk - ^k'1' C f (^ k) - f (tk)3Atk + l a ( gk'	 ah(tk)a(^,.'

we can write

Mk+l EI nk+l. - tk+l l2 ^_ (Mk + 2E(nk - tk)' C f ( ilk) - f ( k)]Atk)

+Ei f(nk) - f(tk)I 2Atk + Ewk[c(nk) - Q (tk)]' [ a (nk) - a(tk)]G)k

+ E{C aV a '1k) - a ( g k)a'[ Q (9k) - ah(9010kd

+	 [a(9k)	 ah ( 9 k) a' [cr(tk)	 aOk)la^,

A + B + C + D + E.

Using the Lipschitz condition (Cl), and (C2), yields, for some

real K,

A s Mk (1+2K8h)

B 
s 

--1tsh

C s "k8h

I DI s KbhMk
 + 

Kbh l a(ek) - 
ah(kk) 

1

2

r

2I E I 9 KShI a (tk) - ah(tk) 1.

I
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Thus

Mk+L ^ Mk('-'-KsY-K4'Oh) -^ K5EI a(tk)	 % ' tk ) 126h

and

	

Mk '^ K (1+Ki ) N I ^( )	 ( ) ( 2 3 ( Q ( ) - Cr ( ) 1 2s .7	 .^ h	 ^	 h k	 h^=q 	,^	 h^	 h

Then (Al) follows From (C4) and

(1+K65h )
N
 (1+K65h) 

T/"2 5h 9 exp K6 T/K2.

Finally, since the number of terms of the process (t k) which

effect the t h (t) process on [O A T] is at most T/K2 E)h and at

least T/Kiah) and since Mk -4 0 uniformly as h -y 0, for k ;9 N)

we have

E) t h (t) - Ih (t)I I _+ 0

on [0,T], as h -3 0. Q.E.D.

t

I

I
1
t

Lemma 2.	 Assume (Cl) _ (C3) .	 Let	 N = T/K2 6hj n = t/K26h.

The= n s NY
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E max It 2 r( 
+I t

hh ( 2 ) eKt

nak0

F mac I tk - tk 1
2. ;,Kt (^.+I hI2),

n^kk0

where K is a real. number. The same result holds for the (11)

process.

Proof. Again drop the index n on	 Ate, wh^ etc. ,, where

convenient. Then

^k+1.	 0 + Ak + Bk
k	 k

Ak = L f (YAti) Bk=ZQ0doi•
0	 0

By ($b-c), the ah also satisfy a uniform Lipschitz condition (also

uniform in h for small h) and are(bounded uniformly in h for

small h), WriteYk = max I c- g I and Mk = EYk.
3.

kk

Now

tk+ll2 : K(I 1 0 12 + (Ak12 + I Bk I2)	 (A`)

and

max I I
2 	

I f (9.)At I	 K	 (1+I I 2 ) s	 (A3)
rak>O	 0	 i	 0	 i	 h



k

Further, B	 is a mItrtitip#., -Ao Una (Doob rl], Chapter

KEBn,2 .	 n	
2

E max 113k 1-	

I	
KE Z I crh (t i ) I 

ah
nA,-O	 0

J+
hP

Combining (A^) -	 and replacing Bj^,,1 2 by

the majorant M :, ,, yield

11n+1 ^-,' IIMO 1, 11(n6hvIn 2
	

(A5)5^+F MA)0

which is bounded above by the expression given in the lemma for

E max i 90
n+l?X>O kI

AThe proof of the othQr iii,i^tements of the Lemma are similar and

are omitted. Q.E.D.

We next compare I (t) to a process whose distributions are

easier to relate to those of Xt.

Divide [0,T] into intervals with endpoints 0,A,2A. ... 1 
116A

where A >> K 6	 Recall the definition ti h =	 h
1 h F, At s Define

S=O
h	 hn = 0 and the (random) integer 	 by n. = max (n: th g jA).
0	 n

Define the sets of integers

h	 6 h	 h	 h
Ii+l	

r . t 
n	 t r 

< 
t n i+l

32

(A)

I

I

1
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Again, we drop the index h where convenient. Then (using n i for
nh 

P etc.)
i

A - 2K 1 6 h ` tn.	 - to v; A + 2K I a h

and

Z At = t	 - t
reIi 

r 
	 i+1	 ni

Cov Z co	 IE (t	
-treI s
	

ni+l ni

Let YO	 0) and for each h define the process

^j	 rV

Yk+1 = Yk + (YO	 At 
s + a Cyk)Sel 

k+1	 sei 
k+1

Lemma	 (Again, omit index h., where convenient), Assume

(Cl) - (c3)- Then

h -+ 0 
^1s^0n 

k
lin	 sup	 1 = 0.	 (A8)

be the linearly interpolated process with (t)
y

 i*Let y	 Y

Then the multidimensional distributions of	 (t) tend (as h -+0)

to the limit	 h -+0,, then A -+ 0) of those for the process y(t).

(M)

^ I
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Proof. Let ek = Yk ' n . Thenk

	

6k+l ek +	 [f (yk) - f (%))Ats +	 [a(Yk) - Q('S)]ws•

	

S EIk+l	
seIk+l

E(ek+l12 N+1=Mk+A+ B+ C

where (unindexed sums are over s E Ik+1)

A = E^ [ f (yk) - f(gs)]Ats,2

4/K2 '5h
s

	

E( Let s )E Z	 If (Yk)	 f (q +s ) `Ats
S=O nlc

A/KA
s KA- Z (EI

Yk-fin 
	
+ Eh

nk  
+s-n I2)Fh

	

S=O	 k	 nk

s K(A) 2 M + Ko3 j'

where Lemma 2 is used in the last step.

B= E^^ [Q(yk ) - Q(qs)]ws12

E t yk ) - a(q,) 12Ats

4/K25h	 2	 2
= K 

0 
(E Yk- qnk ^ + EI rink+s -qnk )sh

s 1{/^NL + Kp2

1

where., again, Lemma 2 is used in the last step.



C = E 2E0 [f (Yk) - f (t^sAts

ICI s 
KE1/2 1 Ek I 2E1/2 IZ (f (yk ) - f (ns ) )Ats)

S	 K 8
1/2 K2 h	 2 hN	 2 l/2s KMk [	 sh
	 E l yk 

s+ I shyS=0	 S=O	 k

KMk/2[MkA + KA ]1/2

,K6Mk+KA3/2

where the second ,tep used the bound

Elyk -Is+ ( 2 = KEIYk-^ I 2 + 
KEI^s+ 

_^ (2
^.t	 nk	 nk n 

s KMk + KA

and wrwre the last step used a bound EMk < K1 for k s T/A which

is derivable by the method of either Lemmas 1 or 2,

Thus

Mk+l ;g 	 (1+K2A) + K A3/2 Ivy = 0
3	 ^	 0	

,

which implies

	

Mk 
s K4 (T)A1/2) k s T/A	 (A9)

k

35

where K4 depends only on T and the constants in (Cl) - (C2).
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(kij)	 t, t, 1- - t0t,	 of.' Ilic- Lemma follow from (Ag) and

Lemma 2. Q4EoDo

Loma	 A;-21M	 (C^)., Deli': ne

Cr (yk) 6Zkk	 'Vk) /-\

where 5z k = z 
kA+A - zkA' where z t iw,, a vector Wiener process

(EzttZ , = It). Then the distributions of (yk) converge to those of

(y k ) as h —>O (for fixed A).

Proof. A proof can be easily modelled along the lines of the

proof of part of Theorem 1, p. 595 [5] ,, and we only sketch the out-

line. Write ,Ilk 	 whe	
Ul

ro 
,k 

has the dimension of the

0	 0
a (x) in (0). Since cr(x)	 only the sequence

0	 Q
0 

(X)

enters into the definition of the sequence (^
k 
). and we can write

i 

Yk+1  Yk 
+ f 

`yk) (tn k+l-*t n 
k ) 

+ a ('Yk ) uk

	
(AlO)

where

0
a (X)

0 W
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and

I'k.
rV
 ws'

seTk+l

Let o0 have dimension r0 . Suppose that, for all uniformly

bounded (by, say, K) r0-vectors	 k}, we have

l im E exp. Z i uk = exp - I Z 1^ I X A.	 (All)
ha0	 k	 k

Then the multidimensional distributions of (u k) converge to those

Of ((zkA+L1-zkP

Gikhman and Skorokhod used the property (All) to prove (in a

relatively straightforward way) that the multidimensional distribu-

tions of {yk} converge to those,of (yk}. (See Lemmas 2.3 1 p. J99-

601 [5], and the proof concerning convergence in distribution of

{^ (T )} to {^ (T )} on p. 601-602.) Of col e, in [5], the n*
n k	 O k	 n

is scalar process (the vector extension is straightforward) and the

coefficient of f Cyk) is A. But, since t-t I ->A uniformly
nk+:1 nk

in all variables as h -3 0, the proof can easily,, be modified to

account for this minor difference.

Thus we will only prove (All). First, let',,us introduce some

notation. Let T/A = m, and divide each interval' [ip,iA+A]

(i=0,...,m-1) into subintervals of length bh, where bh ->0 as
i

h --.), 0 and bh/Sh -+w. Define the sets of indicei, (subsets of 1 1 ) IIr

t
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6

I	
- (s *0 t e r 0,	 4- (r - 1) b'or -
	

h, (. -l)A + rbn))

1 9 a & *.gml r	 YA/b	 Det'inu

"i rz I 
Xr

W, u	 and w
S ) 

. be the i 
th components ., resp., where

or .9 1	 3.

r - r0 + 1 ,1 ,,,.I r (the last r0 components). (Note that

u x 7, u lro)
r

Next, we show lim S h i = 0 where
h --4 0	 ?

m /Vb 
h	

2+6

Shy i ^ ,2^1 r=l u^r^ ^'

by

(Al2 )

for some 1 > 5 > 0. in fact,

S 	 T max ju	 l 
2+8

	

h., i 7' 
r	

^r, i
h 91

and

lulr i

	

., 
.

1
2+8 

= I z W sip il 
2+8	 b 

h	 max	 2+5

sel 
Ir	

77b s CI Ar

Kb 
h. 

h 
2+8/K2

2 F)h
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where I ws. iI `' 
n is lased, i	 r .- r0 •H l ip ..., r. The Inequality

I ups i I 5 Kh, I, = r - r0 4. 1 ) E . e .9 r follows from

ew

which, in turn, follows from (b, c) and (Cl) - (C3) . The 0(-) terms

are uniform in Fkj and ^, f are the last r0 components of P, , f,

resp. Then

.h 2+S

5hy i^Kbh .- "b--^0.
h

6

Let WF '(m-1) denote the leas'

ul,...,um-1 and let 37(m-1,t) be

addit ion,, ..1, . , u^t . Let b = v
h

measures all the u^r

Now,

b a-algebra measuring all

the least ar-algebra measuring, in

and recall m = T/A. Thus

except for the last one umv'

E(exp W u^I j7(m_l) ]

V-1
= E[ exp ism E ins I -F(m-l) ]E[ exp hmumv l1

A-D.

r	
(gym' rv)2
	

"y
B = E[ (1+i11m my - " 2 +- emv) I (m~ l,v-2)]



CFO

2+5
i^	 t

e av^	 K ^ ^'^m my

Since ECu mv ) .F(m- l.,v-1) a = C, and

b' J^ - K	 Er (1,	 )^ `(m_^^v-^^)	 b I'	 + KS
hmm	 h	 mmv	 hmm	 h

we have

Xm mbh _ M ,.^) ` B s (- ''m mbh + M
 my

where Nv is a real numbe a,

Mmv ^ Ksh + K max ( %', mv  2+5
m, v

Thus

AB = A ( -	 h 
N

)+
Mmv

where

mv^ Mmv'

Continuing the procedure gives

I-

me
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AD = (l 
^m___)v 

+

V

MmI	
s1Mms

Similarly,

	

exp iY' X'uk H	 --- --
k=1	 1=1

M v
MI s E E M

1=1 r=l .fir

r
But	 s	 Z	 KSh i 

-40,
i=r-r0+1

Thus, we have proved (All). Q.E.D.

Lemma 5. Assume (Cl) - (0). L t (y6(t)) be the linear

interpolation of (yk}. The multidimensional distributions of yQ(t)

converge to those of x as Q -*0.

The proof is well-known and is omitted.

y p,+

Proof of Theorem 1. By Lemmas l - 5, the finite dimensional

4
i

distributions of h (t)	 converge to those of	 xt, at points of

continuity of the latter (for	 t s T).	 (9) follows from Lemma 2. Q.F.D.

Proof of Corollary 1. If	 F(•)	 were continuous on	 C[O,T] = Q,

w
then the Corollary follows from Theorem 1, p. 581 [5], since our

t ^
Theorem 1 assures that the conditions of the cited theorem hold.

Corollary 2. P. 579 of [5] asserts that the distribution of	 FQ h(•))
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converge.-i to that of F(x (*)) for alL F( • ) continuous w.p.L. on

C[O,, Tj if (a) the mttltidimensional distributions of ^h (t) converge

to those of xt, and (b) the measures µn are weakly compact. (a)

i Implied by Theorem 1, and (b) is also since, by the proof of

Theorem 1, p. 581 ) [51, weak compactness of Eµn) is implied by (9) (or,

equivalently, by equicont nutty of x, on rO,T) with probability

arbitrarily close to 1). The last statement of the corollary follows From

the previous part of the corollary, Q.E.B.

Proof of Theorem 2. By (C6) the last two terms of (3.0a) are

equal, and $0 are the last two terms of (10b). By hypothesis,

9 (xTn,r) is uniformly bounded w.p.l., and T n T is continuous w.p.l.

(relative to 4). x  is continuous in t w.p.l. Hence, xTnT is

continuous w.p.l. on C[O,T]; hence, cp(xTnT
) is. Thus, by

Corollary 1,

E,	

-4
(gh (Tn r .) ) 

-4 NT (xTf1T)

as h 4 0.

A similar conclusion for the convergence of the 'integral term

follows from the continuity of

t
f k(xs)ds
0

in t. Q.E.D.
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Proof of Theorem 3. Define P(n,h) _ inf PX (Th S nt). Then
x

by (ll) 0

Pn+l,h) ' (l-P(n)h))MO + P(n,h)

a 140 + P(n,h)(1-M0).

Thus

1 - P(n,h) 9 (1+M0)'
	

(A14)

which implies

00

T Tx

hd (Th) -* 0

as T -+ w, uniformly in x,h. Furthermore,

T
Ex f kgh (s))ds --> 0

Tn Th

Ex [9 (th (Tn Th)) - ( h ( Th* ] -^ 0

as T -*w., uniformly in x,h. (A15) and Theorem 2 imply the Theorem.

Q.E.D.
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jr	 j	 yl --4	 1 lo,1 0t,00l ,asti, ,	 o I T(wessev, W	 Y.9 11), 3.

► 	 E,. 13. P,';r4k!up %'1r 0' 	 i lrnousner,TrAwcr,l ( K-1 , (Translation -it'

Russian book).

fl , ;rj T	 j	 F,. t,, I J ,V̂ r , An,-). j,y S j S j3V TT I=eriQal Methods Th"I I ev, 1

11. J. Kushner, A. 7. Kh., .'Iwaan, ' f iTmerical Methods for the Solution oV

the Degenerate Nonlinear Equations Arising in Optimal Stochastic Control.
Theory', IEEE Trans. on Automat'!(.- Control, AC-13 ,. August 1968.

1. 1. Gikhman, A. V. Skorokhod, Introduction to Random Processes,
Izdatelctvo Nauka, Moscow, 1966 (in Russian).
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